Always Try a Problem Before You Assign It



Wednesday, September 14th, 2016
Have you ever thought about this numerical sequence—0, 1, 2, 3, 4, 5, 7, 8, 10, 12? What does the sequence have to do with unicycles, bicycles, and tricycles? And what's my mathematical and pedagogical quandary? Read more and find out.

Read more »

Does Changing Subtraction to Addition Make It Easier?



Thursday, April 7th, 2016
Teachers have always told me that paper-and-pencil subtraction when problems call for regrouping is hard to teach and hard for students to learn. Much harder than addition. So why subtract when you can always add? That’s what my friend Nicholas thought, and he taught me how.


Read more »

A Reponse to Joe Schwartz’s Blog about Algorithms



Monday, April 4th, 2016
I was recently planning to teach my friend Ruth Cossey’s elementary math methods class at Mills College in Oakland, California. Digging through my collection of student work, I found a paper from a third grader I had interviewed. When doing interviews, I typically ask students to figure out answers in their heads, but I agreed when Nomar asked for paper and pencil for some of the problems.

Read more »

Fractions on a Number Line



Wednesday, March 16th, 2016
The fourth graders I’m working with on a regular basis are learning about fractions. During a class conversation, one student declared, “Fractions aren’t numbers.” Most of the others in the class agreed. I tried to help with the misunderstanding by teaching a lesson about placing fractions on a number line.


Read more »